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Abstract. We calculate high-temperature graph expansions for the Ising spin glass model with 4 symmetric
random distribution functions for its nearest neighbor interaction constants Jij . Series for the Edwards-
Anderson susceptibility χEA are obtained to order 13 in the expansion variable (J/(kBT ))2 for the general
d-dimensional hyper-cubic lattice, where the parameter J determines the width of the distributions. We
explain in detail how the expansions are calculated. The analysis, using the Dlog-Padé approximation and
the techniques known as M1 and M2, leads to estimates for the critical threshold (J/(kBTc))

2 and for the
critical exponent γ in dimensions 4, 5, 7 and 8 for all the distribution functions. In each dimension the
values for γ agree, within their uncertainty margins, with a common value for the different distributions,
thus confirming universality.

PACS. 05.70.Jk Critical point phenomena – 75.10.Nr Spin-glass and other random models

1 Introduction

In 1975, Edwards and Anderson (EA) [1] introduced a
model for the theoretical study of spin glasses (SG) [2,3],
which has started modern spin glass theory and has been
of continued interest until today. Here we discuss the clas-
sical Ising case: The magnetic moments are represented
by ‘spin’ variables {si, i = 1, 2, . . . , N}, which can assume
the values si = ±1 and are located on the sites {i} of the
d-dimensional hyper-cubic lattice. During our calculations
we use a finite number of lattice sites N but eventually we
are interested in the thermodynamic limit, N → ∞. The
spins’ interaction is governed by the Hamiltonian

H{Jij}({si}) = −
∑

〈ij〉
Jij sisj − h0

N∑

i=1

si, (1)

where
∑

〈ij〉 denotes the sum over all pairs of nearest
neighbor lattice sites 〈ij〉, which we also call the lattice
bonds, and the spin interaction constants Jij are chosen at
random from a symmetric probability distribution, which
is the same for all bonds. The external magnetic field h0 is
needed to define thermodynamic quantities as derivatives
with respect to it, but apart from that, we concentrate on
the case h0 = 0. The Hamiltonian’s index {Jij} indicates
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that we deal with quenched disorder, i.e. the thermody-
namic average for any observable is performed for a fixed
set of coupling constants {Jij}. The configurational av-
erage of measurable thermodynamic quantities, over the
random variables, is performed subsequently. For self aver-
aging quantities this leads to expressions of what could be
measured in experiments. We denote the thermodynamic
average of any observable A({si}) by 〈A〉T , and the con-
figurational average of any function X({Jij}) by [X ]R.

The EA model neglects the details of the microscopic
interaction between the spins, but exhibits the two essen-
tial ingredients that lead to the interesting features of spin
glasses: Quenched disorder and frustration. Since little has
been proved exactly for short ranged spin glass models, we
assume what today is generally accepted, based on analyt-
ical and numerical evidence: Above the system’s lower crit-
ical dimension dl, whose value is controversial but agreed
to be between 2 and 3 [4,5], it undergoes a continuous
transition at a non-zero critical temperature Tc to a low
temperature spin glass phase. This phase is characterized
by broken spin-flip symmetry, i.e. a non-zero Edwards-
Anderson order parameter

qEA =
1
N

N∑

i=1

[〈si〉2T
]
R

. (2)
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The upper critical dimension, above which mean field be-
havior becomes dominant, is believed to be du = 6 [6,7].

As the temperature T approaches Tc from above,
we expect the susceptibility associated with qEA , the
Edwards-Anderson susceptibility,

χEA =
1
N

N∑

i,j=1

[〈sisj〉2T
]
R

, (3)

to exhibit a power law divergence, χEA ∼ (Tc − T )−γ ,
characterized by the critical exponent γ. In the present
study we use series expansions to investigate this behav-
ior. Both qEA and χEA are related to configurational av-
erages of higher order logarithmic derivatives of the par-
tition function −∂m ln Z

∂hm
0

∣∣∣
h0=0

with respect to the external

magnetic field. Those relations become linear in the ther-
modynamic limit [8].

The renormalization group theory [9] in dimension
d = 6− ε predicts the universality of γ and of other expo-
nents, related to it by scaling relations. The universality
classes should be set by the dimensionalities of space and
of the spin variables, and not by details of the distribution
functions.

Series expansion has been used in the past to study the
spin glass transition [8,10–13] and the results support the
statements mentioned above. Our renewed interest in the
problem awoke with a series of studies [14–20] that found,
based on computer simulations, that the critical exponents
vary with the probability distribution for the quenched
disorder in the coupling constants Jij . This is in clear
violation of universality and not sufficiently explained by
theory.

Undoubtedly, many of the enormous complications and
features observed in the study of spin glasses arise from
the disorder inherent in these systems. They gave the
model the reputation of being one of the toughest sub-
jects in computational physics. Simulations are here di-
rectly impacted by long relaxation times, memory effects,
hysteresis, the rugged energy landscape with many meta-
stable states and the huge parameter space over which to
average.

The technique of series expansion comes with two im-
mediate advantages: The averaging over the randomness
can be done exactly, and the series can, given the avail-
ability of graph data, be obtained in general dimension.
The subsequent analysis is still done in each dimension
separately, but results generally get more reliable with in-
creasing dimension, while simulations become increasingly
expensive in their computational demands. The previous
series expansion studies of the Ising spin glass used only
the bimodal random distribution of Jij = ±J , limiting
their use in the comparison with the claims of violated
universality. In the present study we extend the research
by addressing several other symmetric distribution func-
tions, each with a variable width determined by the pa-
rameter J . We use the same distributions as Bernardi and
Campbell in [15], except for the exponential distribution,
which is excluded for reasons given in Section 6. After

introducing additional notations and the random distri-
bution functions in Section 2, we give a detailed explana-
tion of the series generation in Sections 3 and 4, which
should allow the interested reader to follow each step. As
an example, we actually show the complete calculation of
a fourth order series in Section 5. In Section 6 we present
our general-dimension series in full, accompanied by some
discussion of accuracy checks. Our series analysis and final
results are described in Section 7 and we finish with our
conclusions in Section 8.

2 Further notations and definitions

With β = 1
kBT , where kB denotes Boltzmann’s constant

and T the absolute temperature, the ensemble average of
an observable A is calculated by

〈A〉T =
Tr

(
Ae−βH)

Z
=

Tr
(
Ae−βH)

Tr (e−βH)
, (4)

where the partition function Z appears in the denomina-
tor. Here the trace (Tr) is a shorthand for summing over
all possible values of the spins’ {si} configuration

TrX = Tr
{si}

X({si}) =
∑

s1=±1

· · ·
∑

sN=±1

X({si}) . (5)

The free energy per site F is obtained from Z by

F =
1
N

FN ≡ − 1
βN

[lnZ]R. (6)

Since the interaction constants Jij appear only in prod-
ucts with β, it is convenient to use κij = βJij as the ar-
gument of the distribution functions introduced below. If
J2 is some measure of [J2

ij ]R, then we also use κ = βJ as
expansion variable, at least temporarily. Since only even
powers of κ remain, we eventually use x = κ2 as the ex-
pansion variable in our high temperature series. Likewise
we use xc = (J/(kBTc))2 to denote the critical threshold.

In the general case of a continuous probability dis-
tribution P (z), the configurational average is the nested
integral

[X ]R =

−∞∫
· · ·

∫

−∞
X({zij})

∏

〈ij〉
(P (zij) dzij) . (7)

For the bimodal random distribution the coupling con-
stants κij for nearest neighbor pairs randomly assume only
values of either +κ or −κ, so the latter integral can be
written as the nested sum

[X ]R =
1

2Nd

∑

{κ〈ij〉=±κ}
X({κij}), (8)

where a normalization factor of 1/2 stems from each κij

in the sum. In the d-dimensional hyper-cubic lattice with
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N sites the number of nearest neighbor pairs approaches
Nd for large N when boundary effects become negligible.

Near the critical temperature Tc, the quantity of our
interest, χEA , is expected to have a singularity of the form

χEA ≈ A(xc − x)−γ(1 + B(xc − x)∆1 + · · · ). (9)

The aim of our analysis is to determine the critical expo-
nent γ and, to a lesser extent, the first correction expo-
nent ∆1. As for the free energy, we study this susceptibility
per lattice site.

2.1 The random distributions

The different probability distributions, that we study, are
listed below. We call them Bimodal, Gaussian, Uniform
and Double-Triangular.

Pbim(z) =
1
2
(δ[z − κ] + δ[z + κ]) (10)

Pgau(z) =
e−

z2

2κ2

κ
√

2π
(11)

Puni(z) =

{
1/(2κ) for |z| < κ

0 for |z| ≥ κ
(12)

Ptri(z) =

{ |z|/κ2 for |z| < κ

0 for |z| ≥ κ.
(13)

• The distributions are largely characterized by their
moments

Mn ≡ [zn]R =
∫ ∞

−∞
zn P (z) dz. (14)

• Since all distributions have the symmetry
P (−z) = P (z), the moments for odd n vanish.
In particular, the distributions have zero mean
[z]R =

∫ ∞
−∞ z P (z) dz = 0.

• For even n the moments are:
Bimodal distribution: κn

Gaussian distribution: (n − 1)!! κn

Uniform distribution: κn/(n + 1)
Double-Triangular distribution: κn/(n/2 + 1).

• Thus all the distributions are normalized∫ ∞
−∞ P (z) dz = 1.

• A distribution’s second moment M2 =
∫ ∞
−∞ z2 P (z) dz,

equal to the variance, is commonly associated with its
width. In all cases it is linear in κ2, but with different
pre-factors. Explicitly, M2 is equal to κ2 (Bimodal),
κ2 (Gaussian), κ2/3 (Uniform), and κ2/2 (Double-
Triangular), respectively. With slightly redefined vari-
ables, M2 could be equal to κ2 in all cases, which, in
retrospective, would have been nicer.

• Figure 1 illustrates the distribution functions. The
plots were calculated for the parameter κ = 5.

Gaussian Uniform Double−Triangular

−10 0 10

0

0.05

0.1

0.15

0.2

Fig. 1. The distribution functions for κ = 5.

2.2 Tangential moments

In the calculation of the series we encounter the following
integrals over the distributions

mn ≡ [kn]R =
∫

tanhn(z) P (z) dz. (15)

We sometimes refer to mn as the nth tangential moment
of the distribution, in order to distinguish it from the reg-
ular moment (14). For a series to power κ2N we need all
moments up to mN (not 2N as we will see later). For the
bimodal distribution the tangential moments are trivial:

mn =
1
2
(tanhn(κ) + tanhn(−κ)) =

{
0 odd n
tanhn κ even n.

The simple form m2n = tanh2n κ = wn makes w ≡
tanh2(κ) an alternative (and convenient) expansion vari-
able for this case, which has been used in the past [8,10].
This, however, is not true for the other distributions. For
them it may be possible to calculate the mn analytically,
as well. But the results may be complicated functions of
the parameter κ, not suitable for our power series expan-
sion. Hence we are content to calculate the necessary mo-
ments mn of all distributions as series in κ. To avoid the
tedious work, this can conveniently be done with software
for symbolic computation, such as Mathematica. The ob-
tained coefficients are later used in the graph expansion,
both for the computerized calculation and for the example
in this article. The symmetry of the distributions makes
all moments for odd n vanish. Due to the power series
of tanhn κ, each moment mn has only powers of κn and
higher, somewhat important during cumulant subtraction.
Note that in the framework of series expansions, this is an
exact treatment of the randomness. We do not lose any
additional information since a priori we are limited to the
highest order of our final series.

As an illustration, we show the expansion of the first
few moments for the bimodal and for the Gaussian distri-
butions, to be used in the example below.
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2.2.1 Bimodal tangential moments

m0 = 1, (16)

m2 = κ2 − 2 κ4

3
+

17 κ6

45
− 62 κ8

315
+

1382 κ10

14175
− 21844 κ12

467775

+
929569 κ14

42567525
− 6404582 κ16

638512875
+

443861162 κ18

97692469875
− 18888466084 κ20

9280784638125

+
113927491862 κ22

126109485376875
− 58870668456604κ24

147926426347074375
+

8374643517010684κ26

48076088562799171875

− 689005380505609448 κ28

9086380738369043484375
+

129848163681107301953κ30

3952575621190533915703125
, (17)

m4 = κ4 − 4 κ6

3
+

6 κ8

5
− 848 κ10

945
+

8507 κ12

14175

−3868 κ14

10395
+

46471426 κ16

212837625
− 47060768 κ18

383107725
+

518299498 κ20

7753370625

−92014385608 κ22

2598619698675
+

39319617599924 κ24

2143861251406875
− 12160377940064κ26

1304465840803125

+
14121349128787207129 κ28

3028793579456347828125
− 20894145609681223868κ30

9086380738369043484375
, (18)

m6 = κ6 − 2 κ8 +
37 κ10

15
− 2266 κ12

945
+

1901 κ14

945
− 79214 κ16

51975
+

136750052 κ18

127702575

−64742312 κ20

91216125
+

3282022 κ22

7309575
− 710423622556 κ24

2598619698675
+

82292419438259 κ26

510443155096875

−68433004067940682κ28

739632131735371875
+

157107220075270779857κ30

3028793579456347828125
. (19)

2.2.2 Gaussian tangential moments

m0 = 1, (20)

m2 = κ2 − 2 κ4 +
17 κ6

3
− 62 κ8

3
+

1382 κ10

15
− 21844 κ12

45

+
929569 κ14

315
− 6404582 κ16

315
+

443861162 κ18

2835
− 18888466084 κ20

14175

+
1936767361654κ22

155925
− 58870668456604κ24

467775
+

8374643517010684 κ26

6081075

−689005380505609448κ28

42567525
+

129848163681107301953κ30

638512875
, (21)

m4 = 3 κ4 − 20 κ6 + 126 κ8 − 848 κ10 +
93577 κ12

15

−50284 κ14 +
46471426 κ16

105
− 800033056 κ18

189
+

9847690462 κ20

225

−92014385608 κ22

189
+

904351204798252κ24

155925
− 12160377940064κ26

165

+
14121349128787207129κ28

14189175
− 605930222680755492172κ30

42567525
, (22)

m6 = 15 κ6 − 210 κ8 + 2331 κ10 − 24926 κ12 + 271843 κ14

−3089346 κ16 +
2324750884 κ18

63
− 20911766776 κ20

45

+6173483382 κ22 − 16339743318788 κ24

189
+

1892725647079957κ26

1485

−68433004067940682κ28

3465
+

4556109382182852615853κ30

14189175
. (23)
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3 Connected graph expansion and cumulant
subtraction

An extensive physical quantity X can be expanded in
terms of connected graphs only [21]. To order n in a suit-
able expansion variable, say x, all connected graphs with
n or less edges are used,

X =
n∑

b=0

∑

Γ∈Γb

w(Γ )Xc
Γ + O(|x|n+1). (24)

Here Γb denotes the set of all connected graphs Γ with
b edges, w(Γ ) is the lattice constant for weak embeddings
of Γ inside the lattice (see Sect. 3.2) and Xc

Γ is the cu-
mulant of the graph’s contribution. For the quantity we
calculate, the empty graph and the single vertex graph
(with 0 edges) together only contribute a constant sum-
mand of 1 with the chosen normalization.

The cumulant contribution of a connected graph Γ is
obtained by subtracting off the cumulant contribution of
all its connected subgraphs,

Xc
Γ = XΓ −

∑

γ⊂Γ

Xc
γ . (25)

Due to the subtractions, Xc
Γ is the contribution to XΓ ,

which depends on every one of the b edges in Γ and thus
has only terms of order b and higher in the expansion
variable. This property allows us to stop the expansion at
a certain size of graphs, with a series which is correct to
the obtained order, and is in contrast to the original XΓ ,
which can contribute to any power.

We often use the term bond instead of edge and likewise
site instead of vertex since we deal with a physical model
on a lattice, and will eventually embed the graph inside it.
The physical model is also the reason we do not address
digraphs or graphs with loops. Here the term loop, as com-
monly used in graph-theory, denotes an edge whose both
ends are incident on the same vertex. This must be dis-
tinguished from a cycle (closed path) in the graph, which
is important to us.

Our model involves only nearest-neighbor interactions,
visualized by occupied lattice bonds. Since a graph Γ on
the lattice is completely isolated from the rest of the infi-
nite lattice by unoccupied bonds, the thermodynamics of
its spins is determined by the reduced NΓ -particle Hamil-
tonian for the graph

HΓ {si ∈ Γ} = −
∑

〈ij〉∈Γ

Jijsisj . (26)

3.1 Cumulant subtraction

Equation (25) contains the sum over connected subgraphs.
In the following we have written out the cumulants for the
smallest graphs, with explicit numerical coefficients and
graph indices, because we will need them in the example
later. For these small graphs, the expressions can easily

be confirmed by visual inspection using Figure 2. These
cumulants are given by

Xc
Γ0

= XΓ0 ,

Xc
Γ1

= XΓ1 − 2Xc
Γ0

,

Xc
Γ2

= XΓ2 − 3Xc
Γ0

− 2Xc
Γ1

,

Xc
Γ3

= XΓ3 − 4Xc
Γ0

− 3Xc
Γ1

− 3Xc
Γ2

,

Xc
Γ4

= XΓ4 − 4Xc
Γ0

− 3Xc
Γ1

− 2Xc
Γ2

,

Xc
Γ5

= XΓ5 − 4Xc
Γ0

− 4Xc
Γ1

− 4Xc
Γ2

− 4Xc
Γ4

,

Xc
Γ6

= XΓ6 − 5Xc
Γ0

− 4Xc
Γ1

− 3Xc
Γ2

− 2Xc
Γ4

,

Xc
Γ7

= XΓ7 − 5Xc
Γ0

− 4Xc
Γ1

− 4Xc
Γ2

− 1Xc
Γ3

− 2Xc
Γ4

,

Xc
Γ8

= XΓ8 − 5Xc
Γ0

− 4Xc
Γ1

− 6Xc
Γ2

− 4Xc
Γ3

. (27)

3.2 The lattice constants for weak embeddings

In (24), the cumulant contribution of each graph is mul-
tiplied by its lattice constant w(Γ ). This constant is the
number of distinct ways per lattice-site in which the graph
can be weakly embedded in a particular lattice, and thus
it ties our series to that specific lattice. In this article we
address the d-dimensional hyper-cubic lattice, which, as
the term suggests, is a generalization of the square lattice
(d = 2) and the cubic lattice (d = 3). We use the tabu-
lated functions wΓ (d) from [22]. To calculate our example
later on, we need the lattice constants of the first graphs:

w(Γ0) = 1,

w(Γ1) = d,

w(Γ2) = −d + 2 d2,

w(Γ3) =
2 d

3
− 2 d2 +

4 d3

3
,

w(Γ4) = d − 4 d2 + 4 d3,

w(Γ5) = −d

2
+

d2

2
,

w(Γ6) = d + 4 d2 − 12 d3 + 8 d4,

w(Γ7) = −2 d + 10 d2 − 16 d3 + 8 d4,

w(Γ8) = −d

2
+

11 d2

6
− 2 d3 +

2 d4

3
. (28)

4 General calculation and simplifications
for the Ising spin glass

The Boltzmann factor e−βH can be rewritten in a way
that makes the calculation of the trace more convenient.
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3
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Fig. 2. The smallest graphs, that can be embedded into the hyper-cubic lattice.

With the notations λ = βh0, τ = tanhλ, Kij = coshκij

and kij = tanhκij we obtain:

e−βH = exp



β
∑

〈ij〉
Jijsisj + βh0

N∑

i=1

si





=
∏

〈ij〉
(cosh(κijsisj) + sinh(κijsisj))

×
N∏

i=1

(cosh(λsi) + sinh(λsi)) . (29)

Now we exploit the fact that the only possible values of si

are ±1, together with the symmetry of cosh and anti-
symmetry of sinh:

e−βH = coshN λ
∏

〈ij〉
Kij

∏

〈ij〉
(1 + sisjkij)

N∏

i=1

(1 + siτ) .

(30)
We address the case without external magnetic field, h0 =
0, and call

ZR =
1

2N
Tr




∏

〈ij〉
(1 + kijsisj)

N∏

i=1

(1 + siτ)



 (31)

the reduced partition function and sometimes use the nota-
tion ZR(Γn) = ZΓn . For the case of zero external magnetic
field h0 = 0 we end up with the important (for our coming
calculations) equation

〈A〉T =
Tr{si}

(
A

∏
〈ij〉 (1 + kijsisj)

)

Tr{si}
(∏

〈ij〉 (1 + kijsisj)
) . (32)

Often A will be a linear combination of smsn. We will then
see the terms

〈smsn〉T =
2−N Tr{si}

(
smsn

∏
〈ij〉 (1 + kijsisj)

)

2−N Tr{si}
(∏

〈ij〉 (1 + kijsisj)
) . (33)

4.1 Graph-expansion for the Edwards-Anderson
susceptibility

For the graph expansion of the Edwards-Anderson suscep-
tibility (3) we apply the general formula (24). The calcu-
lation is done to order n in x = κ2. With this expansion

variable all the dependence on the coupling strength pa-
rameter J and the temperature T are absorbed in the
argument of the power series. We obtain

NχEA =
n∑

b=0

∑

Γ∈Γb

w(Γ )Xc
Γ . (34)

and also denote the associated (non-cumulant) observable
on only one (sub)graph as

XΓ =
∑

i,j∈Γ

[〈sisj〉2T
]
R

. (35)

5 Explicit calculation for the smallest graphs

We now show explicitly the calculation of χEA for the
smallest graphs in Figure 2, using the equations from the
previous section. Here we often use

[
kn

ij

]
R

= mn following
definition (15).

• For Γ0, we have

χEA(Γ0) = 1
[〈s2

0〉2T
]
R

=
[〈1〉2T

]
R

= 1. (36)

For any spin, the self-correlation trivially equals 1.
• For Γ1,

χEA(Γ1) =
[〈s1s2〉2T

]
R

+
[〈s2s1〉2T

]
R

+ 〈s1〉2 + 〈s2〉2

= 2
[〈s1s2〉2T

]
R

+ 2. (37)

The denominator of 〈s1s2〉T is

ZΓ1 = ZR(Γ1) = 2−2 Tr
{s1,s2}

(1 + k12s1s2) = 1, (38)

and the numerator is

〈s1s2〉T ZΓ1 = 2−2 Tr
{s1,s2}

(s1s2(1 + k12s1s2))

= 2−2 Tr
{s1,s2}

(s1s2 + k12) = k12. (39)

Thus,

χEA(Γ1) = 2
[〈s1s2〉2T

]
R

+ 2 = 2
[
k2
12

]
R

+ 2

= 2
[
tanh2(βJ12)

]
R

+ 2 = 2m2 + 2, (40)

where we used the definition of the tangential mo-
ment m2.
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• For Γ2,

χEA(Γ2) = 2
([〈s1s2〉2T

]
R

+
[〈s2s3〉2T

]
R

+
[〈s1s3〉2T

]
R

)
+ 3. (41)

The denominator of each correlation is

ZΓ2 =2−3 Tr
{s1,s2,s3}

((1 + k12s1s2)(1 + k23s2s3)) (42)

=2−3 Tr
{s1,s2,s3}

(1+k12s1s2+k23s2s3+k12k23s1s3)

=1. (43)

The numerator is

〈s1s2〉T ZΓ2 = 2−3 Tr
{s1,s2,s3}

(s1s2(1 + k12s1s2)

×(1 + k23s2s3)) = k12, (44)

and likewise

〈s2s3〉T ZΓ2 = k23 , and (45)

〈s1s3〉T ZΓ2 = 2−3 Tr
{s1,s2,s3}

(s1s3(1 + k12s1s2)

×(1 + k23s2s3)) = k12k23. (46)

The configurational average gives
[〈s1s2〉2T

]
R

=
[
k2
12

]
R

= m2,
[〈s2s3〉2T

]
R

= m2 (47)

and
[〈s1s3〉2T

]
R

=
[
k2
12k

2
23

]
R

=
[
k2
12

]
R

[
k2
23

]
R

= m2
2, (48)

where in the last step we used the fact that the ran-
dom variables kij for different bonds are uncorrelated.
Finally,

χEA(Γ2) = 3 + 4m2 + 2m2
2. (49)

A few general observations are in order: From the possi-
ble values of a spin variable, si = ±1, we trivially have
s2

i = 1. Further, the trace sums over the possible val-
ues of each spin, so any summand with an unpaired si

vanishes. When writing out the product within the traces
(1 + kijsisj) · · · (1 + kklsksl) one has to choose from each
pair of 〈ij〉 (and for any resulting summand) either the
constant 1 or the bond factor kij . To find the terms that
will actually survive the trace, the sisj site-factors accom-
panying any bond have to be combined with other sites,
either from another bond in the graph or from terms orig-
inally present inside the trace.

For any acyclic graph, which we have seen so far, we
immediately see that the reduced partition function is al-
ways equal to 1; no bond can be combined with others
to eliminate all unpaired sites. Also the numerator for
pair correlations remains simple. Visually only a path of
bonds joining the two sites in question yields factors of
only paired spins, which survive the trace. Each such bond
contributes a factor of m2. A constant multiplier results
from the number of ways the pair of sites (and equivalent

pairs) can be joined. For cyclic graphs the calculation be-
comes much more complicated. In passing please note that
one of the inherent features of spin glasses is frustration.
Only a cyclic graph is susceptible to this phenomenon and
as such can possibly integrate true SG-properties into our
series.

• For Γ3,

χEA(Γ3) = 2
[〈s1s2〉2T + 〈s2s3〉2T + 〈s2s4〉2T + 〈s1s3〉2T

+〈s1s4〉2T + 〈s3s4〉2T
]
R

+ 4

= 4 + 6m2 + 6m2
2. (50)

• For Γ4,

χEA(Γ4) = 2
([〈s1s2〉2T

]
R

+
[〈s2s3〉2T

]
R

+
[〈s3s4〉2T

]
R

+
[〈s1s3〉2T

]
R

+
[〈s2s4〉2T

]
R

+
[〈s1s4〉2T

]
R

)

+ 4

= 4 + 6m2 + 4m2
2 + 2m3

2. (51)

• For Γ5,

χEA(Γ5) = 4 + 8
[〈s1s3〉2T

]
R

+ 4
[〈s1s2〉2T

]
R

. (52)

Here we used the equivalence of pairs of sites, in terms
of adjacencies, to reduce the number of terms to 3. We
defer calculation of the result till later.

• For Γ6,

χEA(Γ6) = 2
[
4〈s1s4〉2T + 3〈s1s2〉2T + 2〈s1s5〉2T

+1〈s1s3〉2T
]
R

+ 5 = 5 + 8m2 + 6m2
2 + 4m3

2 + 2m4
2.

(53)

• For Γ7,

χEA(Γ7) = 2
[
4〈s1s4〉2T + 4〈s1s2〉2T + 2〈s1s5〉2T

]
R

+ 5 = 5 + 8m2 + 8m2
2 + 4m3

2. (54)

• For Γ8,

χEA(Γ8) = 2
[
4〈s1s5〉2T + 6〈s1s2〉2T

]
R

+ 5 = 5 + 8m2 + 12m2
2. (55)

We now resume the calculation of χEA(Γ5) from (52)
which, due to the graph’s cycle, is significantly more
complicated than the contribution of the other graphs.
The complexity enters through the non-trivial partition
function

ZΓ5 = 2−4 Tr
{s1,s2,s3,s4}

((1 + k13s1s3)(1 + k23s2s3)

×(1 + k14s1s4)(1 + k24s2s4)) = 1 + k13k23k14k24. (56)

The numerators for the spin correlations are
〈s1s3〉T ZΓ5 = k13 + k14k24k23 and 〈s1s2〉T ZΓ5 =
k13k23 + k14k24. The complicated part is now performing
the averaging over the randomness for

[〈s1s3〉2T
]
R

=

[(
k13 + k14k24k23

1 + k13k23k14k24

)2
]

R

(57)
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and
[〈s1s2〉2T

]
R

=

[(
k13k23 + k14k24

1 + k13k23k14k24

)2
]

R

. (58)

In fact, for most probability distributions we do not know
to calculate this directly. For the bimodal distribution it is
possible, and was in fact done also for much larger graphs
with a computer [8]. For continuous distributions the cal-
culation would at best become extremely tedious and most
likely not feasible for large graphs. Our solution again uti-
lizes a power expansion. By this we do not lose any more
information since our final series are limited to a certain
order in the expansion variable anyway.

To make the expansion process more obvious we
rewrite the equations with the symbols uij = kij/k such
that kij = k uij and

〈s1s3〉T =
ku13 + k3u14u24u23

1 + k4u13u23u14u24
, (59)

〈s1s2〉T =
k2u13u23 + k2u14u24

1 + k4u13u23u14u24
, (60)

and expand the squares in powers of k:

〈s1s3〉2T = u2
13k

2 + 2u13u14u23u24k
4

+ (−2u3
13u14u23u24 + u2

14u
2
23u

2
24)k

6 − 4(u2
13u

2
14u

2
23u

2
24)k

8

+(3u4
13u

2
14u

2
23u

2
24−2u13u

3
14u

3
23u

3
24)k

10+6u3
13u

3
14u

3
23u

3
24k

12

+ (−4u5
13u

3
14u

3
23u

3
24 + 3u2

13u
4
14u

4
23u

4
24)k

14 + O(|k|15),
(61)

〈s1s2〉2T = k4(u2
13u

2
23 + 2u13u14u23u24 + u2

14u
2
24)

+ k8(−2u3
13u14u

3
23u24 − 4u2

13u
2
14u

2
23u

2
24

− 2u13u
3
14u23u

3
24) + k12(3u4

13u
2
14u

4
23u

2
24

+ 6u3
13u

3
14u

3
23u

3
24 + 3u2

13u
4
14u

2
23u

4
24) + O(|k|15). (62)

With the fractions removed, we can again factorize for av-
erages over independent variables, and thus use the pre-
viously defined moments of the random distributions:

[〈s1s3〉2T
]
R

= m2 + m3
2 − 4m4

2 + 3m3
2m4

+ 3m2m
3
4 + O(|κ|15), (63)

[〈s1s2〉2T
]
R

= 2m2
2 − 4m4

2 + 6m2
2m

2
4 + O(|κ|15). (64)

Here we expanded to a higher power than actually neces-
sary for the largest graph that we consider in this example.
It shows that higher moments actually show up. We first
encountered m3 = m5 = 0 and

m4 =
[
k4

ij

]
R

=
[
tanh4 κij

]
R

=
∫

tanh4 x P (x)dx. (65)

For the bimodal distribution we can quickly use the simple
form of the moments m2 = w and m4 = w2, and obtain

[〈s1s3〉2T
]
R

= w + w3 − 4w4 + 3w5 + 3w7 + . . . (66)
[〈s1s2〉2T

]
R

= 2w2 − 4w4 + 6w6 + . . . , (67)

and thus

χEA(Γ5) = 4 + 8w + 8w2 + 8w3 − 48w4 + 24w5

+ 24w6 + 24w7 + O(|w|8). (68)

For the general distribution we remain with

χEA(Γ5) = 4 + 8(m2 + m2
2 + m3

2 − 6m4
2 + 3m3

2m4

+ 3m2
2m

2
4 + 3m2m

3
4) + O(|κ|15), (69)

on which we elaborate further.

5.1 Performing cumulant subtraction

In this section we perform the cumulant subtraction for
the quantity χEA , which we calculated in the previous sec-
tion. The general equations were given in Section 3.1 and
in the following we show the cumulant graph contributions
first in terms of the tangential moments and also for the
case of the bimodal distribution using w as the expansion
variable, thus substituting m2 = w and m4 = w2.

Xc
Γ0

= 1,

Xc
Γ1

= 2m2 = 2w,

Xc
Γ2

= 2m2
2 = 2w2,

Xc
Γ3

= 0,

Xc
Γ4

= 2m3
2 = 2w3,

Xc
Γ5

= −48m4
2 + 24m3

2m4 + 24m2
2m

2
4 + 24m2m

3
4 + . . .

= −48w4 + 24w5 + 24w6 + 24w7 + . . . ,

Xc
Γ6

= 2m4
2 = 2w4,

Xc
Γ7

= 0,

Xc
Γ8

= 0. (70)

Indeed we see that no graph contributes to a power of w
less than its number of bonds. This fact is used in the
computerized calculation as an internal check.

In general we use κ (or x = κ2) as the expansion vari-
able, for which we now use the expansions of the mo-
ments mn from Section 2.2. We show the result for the
Gaussian distribution:

Xc
Γ0

= 1,

Xc
Γ1

= 2 κ2 − 4 κ4 +
34 κ6

3
− 124 κ8

3
+ O(|κ|10),

Xc
Γ2

= 2 κ4 − 8 κ6 +
92 κ8

3
+ O(|κ|10),

Xc
Γ3

= 0,

Xc
Γ4

= 2 κ6 − 12 κ8 + O(|κ|10),
Xc

Γ5
= −48 κ8 + O(|κ|10),

Xc
Γ6

= 2 κ8 + O(|κ|10),
Xc

Γ7
= 0,

Xc
Γ8

= 0. (71)



D. Daboul et al.: Test of universality in the Ising spin glass 239

5.2 Using the lattice constants

Using (24) together with the lattice constants of the small-
est graphs, as given in Section 3.2, we can now perform the
final summation and obtain the series. For the Gaussian
distribution, we find

χEA = 1 + 2 d κ2 + (−6 d + 4 d2)κ4

+
(64 d

3
− 24 d2 + 8 d3

)
κ6

+
(
− 58 d +

280 d2

3
− 72 d3 + 16 d4

)
κ8 + . . .

(72)

For the bimodal distribution one has

χEA = 1 + 2 d κ2 +
(
− 10 d

3
+ 4 d2

)
κ4

+
(

244 d

45
− 40 d2

3
+ 8 d3

)
κ6

+
(

1210 d

63
+

24 d2

5
− 40 d3 + 16 d4

)
κ8 + . . . (73)

or, expanded in w,

χEA = 1 + 2 dw + (−2 d + 4 d2)w2 + (2 d− 8 d2 + 8 d3)w3

+ (26 d − 16 d2 − 24 d3 + 16 d4)w4 + . . . (74)

6 The full series

The series for the d-dimensional hyper-cubic lattice to
order 13 need to take into account 20724 graphs of up
to 13 edges, and are hence calculated using computers.
We use the graph data files that were originally prepared
for [22] by Wan et al., and have since been used in many
studies. Programs were written, that use these data files
to compute the series as outlined in the previous sections.
Details of the algorithms, including important efficiency
considerations, are presented in [23].

Tables 1 to 4 show the resulting series in full. In Ta-
ble 1, for the bimodal distribution, the coefficients are
given as exact fractions. For the other distributions they
were in part calculated using the data type long double in
C++ which limits their accuracy. For comparison we used
two different processor architectures where this data type
is represented in either 96 or 128 bits, and also compared
part of the data with calculations done in double precision
(64 bits). Small rounding errors are obvious in most num-
bers, but further investigation shows, that for coefficients
large in absolute value, the numerical accuracies become
important. Originally we had included in this work the
exponential random distribution which is also addressed
in [15]. This distribution decays slower than the others

and the resulting coefficients become very large in absolute
value, to a degree that intermediate numbers either can
not be presented in long double variables or the rounding
errors become so dominant that the highest order coef-
ficients come out completely wrong. We have started to
calculate the series using arbitrary-precision numerical li-
braries, but that work was not ready in time to be included
here. We exclude the exponential distribution from the
present work, and for the remaining series present the co-
efficients in as many digits as we expect to be correct from
the comparisons mentioned above.

From experience we know that small changes in the
coefficients do not influence the results obtained from se-
ries analysis. Hence the numerical inaccuracies present in
the power series should not influence our final results. For
the bimodal distribution we supplement coefficients for
orders x14 and x15, which were calculated using the non-
free-end (NFE) technique and associated graph data. In
this technique by Harris [24] the thermodynamic functions
under study are renormalized in such a way that the con-
tribution from a graph with at least one free end (i.e. a
vertex with only one incident edge) vanishes. This renor-
malization is possible for the bimodal distribution [8] but
was not obtained for the others. We use equations from [8]
for the NFE-expansion in w, but do not describe the pro-
cess here since the series can also be obtained directly by
variable transformation from w to x, which indeed we use
as a consistency check.

Several checks are performed to assure the correctness
of our series expansions: The first is a complete recalcu-
lation of the corresponding series in [8] for the bimodal
distribution, which shows that the algorithm and its im-
plementation are basically correct.

We mentioned earlier that after cumulant subtraction,
a graph of b edges has only terms of order b and higher
in the expansion variable. As an additional check we do
the actual calculation of the vanishing terms, track the
maximal deviation from zero, and confirm that this num-
ber is in the same range as the numerical rounding errors
observed elsewhere.

For a few sequences of coefficients we find, by examina-
tion of the numerical values, what their exact value must
be in general. If we denote by aij the coefficient multiply-
ing xidj we observe:
• For the bimodal distribution aii = 2i and ai,(i−1) =
−(5/6) 2i (i − 1).

• For the Gaussian distribution aii = 2i and ai,(i−1) =
−(3/2) 2i (i − 1).

• For the uniform distribution aii = (2/3)i and ai,(i−1) =
−(11/10) (2/3)i (i − 1).

• For the double-triangular distribution aii = 1 and
ai,(i−1) = −(17/18) (i− 1).

Obviously this is no rigorous check from first principles,
but if we believe in the regularity and that we can at least
calculate the first few orders correctly, it adds confidence
that no mistake was done at higher orders and that the nu-
merical errors are not exceedingly large. A more compre-
hensive check for numerical rounding errors was already
mentioned above in this section.
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Table 1. Series for the Bimodal distribution on the d-dimensional hyper-cubic lattice and for x = (J/kBT )2.

Terms of the series. χEA = 1 + . . .

+2 x1 d1

− 10
3

x2 d1 +4 x2 d2

+ 244
45

x3 d1 − 40
3

x3 d2

+8 x3 d3

+ 1210
63

x4 d1 + 24
5

x4 d2

−40 x4 d3 +16 x4 d4

− 2557316
14175

x5 d1 + 44480
189

x5 d2

+ 296
15

x5 d3 − 320
3

x5 d4

+32 x5 d5

+ 15891824
93555

x6 d1 − 9373372
14175

x6 d2

+ 111488
189

x6 d3 + 4688
45

x6 d4

− 800
3

x6 d5 +64 x6 d6

+ 190090194848
42567525

x7 d1 − 13641704
2079

x7 d2

+ 645088
945

x7 d3 + 283264
189

x7 d4

+ 1280
3

x7 d5 −640 x7 d6

+128 x7 d7

− 545049148646
127702575

x8 d1 + 3811431542104
212837625

x8 d2

− 32973784
2079

x8 d3 − 7834448
4725

x8 d4

+ 229856
63

x8 d5 + 22016
15

x8 d6

− 4480
3

x8 d7 +256 x8 d8

− 2171514982687276
8881133625

x9 d1 + 35779921623392
76621545

x9 d2

− 32560925165624
127702575

x9 d3 + 3151565216
93555

x9 d4

− 31525376
2835

x9 d5 + 1574144
189

x9 d6

+ 203392
45

x9 d7 − 10240
3

x9 d8

+512 x9 d9

− 202257782879679928
1856156927625

x10 d1 − 3150596158319108
7753370625

x10 d2

+ 17497504604224
18243225

x10 d3 − 44042569593584
91216125

x10 d4

+ 255487168
4455

x10 d5 − 28463552
675

x10 d6

+ 474880
27

x10 d7 + 193792
15

x10 d8

−7680 x10 d9 +1024 x10 d10

+ 44286591649508625456608
2143861251406875

x11 d1 − 24516788251206488696
519723939735

x11 d2

+ 2975087273749088
80405325

x11 d3 − 491320094394464
42567525

x11 d4

+ 14408475958592
14189175

x11 d5 + 753069824
6237

x11 d6

− 270251392
2025

x11 d7 + 6347776
189

x11 d8

+ 175104
5

x11 d9 − 51200
3

x11 d10

+2048 x11 d11

+ 102687986431081211931032
2275791174570375

x12 d1 − 98234614240598344870804
2143861251406875

x12 d2

− 1631193202018689472
39978764595

x12 d3 + 132365195242707824
2170943775

x12 d4

− 36568729916000
1702701

x12 d5 + 5544027735104
2837835

x12 d6

+ 96053248
297

x12 d7 − 24126464
63

x12 d8

+ 3447296
63

x12 d9 + 821248
9

x12 d10

− 112640
3

x12 d11 +4096 x12 d12

− 110468581411293350924457444112
48076088562799171875

x13 d1 + 172781445528971814087368
28988129795625

x13 d2

− 2939279178242203350187328
510443155096875

x13 d3 + 4778773293081621239776
1856156927625

x13 d4

− 23565892697470112
46990125

x13 d5 + 5353769766272
289575

x13 d6
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Terms of the series. χEA = 1 + . . .

+ 39918090277888
10135125

x13 d7 + 688011776
693

x13 d8

− 179936768
175

x13 d9 + 1286144
21

x13 d10

+ 1153024
5

x13 d11 −81920 x13 d12

+8192 x13 d13

− 305463146085574972582952872664
33041384503160158125

x14 d1 + 50334647726118167100558221079016
3028793579456347828125

x14 d2

− 824015715606745029679283608
147926426347074375

x14 d3 − 157096153765758568475862928
32157918771103125

x14 d4

+ 30648160725228437701792
7795859096025

x14 d5 − 2624211856887202496
2960377875

x14 d6

+ 43529789374208
1563705

x14 d7 + 1037253983072768
127702575

x14 d8

+ 1206767104
385

x14 d9 − 1487067136
567

x14 d10

− 5660672
189

x14 d11 + 8531968
15

x14 d12

− 532480
3

x14 d13 +16384 x14 d14

+ 1293826468733333294113597991611697536
3952575621190533915703125

x15 d1 − 338533911194409672724356315499808
363455229534761739375

x15 d2

+ 3142897456730380314538798434325456
3028793579456347828125

x15 d3 − 257903955006958171637687615776
443779279041223125

x15 d4

+ 5449914292983317242598754368
32157918771103125

x15 d5 − 67310752760322121480064
2998407344625

x15 d6

+ 11493150389809720832
23260111875

x15 d7 + 4618407513611776
127702575

x15 d8

+ 3526208986206208
212837625

x15 d9 + 904493910016
93555

x15 d10

− 90834735104
14175

x15 d11 − 93716480
189

x15 d12

+ 61898752
45

x15 d13 − 1146880
3

x15 d14

+32768 x15 d15

7 Analysis of the series

Our analysis uses the Dlog-Padé method [25] and the
methods M1 and M2 [26,27]. Each of these is combined
with Euler-transformations for improved results. For each
series, our main goal is to obtain the critical value xc and
the critical exponent γ which describe the power law di-
vergence, as in

χEA ≈ A(xc − x)−γ(1 + B(xc − x)∆1 ). (75)

The series analysis is done for a fixed dimension at a
time. We present our results for dimensions 7 and 8 above
the upper critical dimension and for 5 and 4 below it. We
also attempted an analysis in the physical dimension 3 but
the results are not conclusive.

At the upper critical dimension dc = 6 the corrections
to scaling become logarithmic and there one expects the
general form

χEA(x) ≈ A(xc − x)−γ | ln(xc − x)|θ . (76)

Instead of M1 and M2, one can apply a modified method
to take such corrections into account. This was pursued
in [8], for the Bimodal distribution, but the authors re-
ported poor convergence already for that case. Given that
our series for the other distributions are more problematic,
we did not attempt a detailed analysis in d = 6.

It is generally observed in series analysis, that for a
given order of expansion, a series behaves better, the
higher the dimension. That is also the case in the study at
hand. Qualitatively it is understood by the fast increase of

the embedding constants with increasing dimension. Thus
a much larger number of lattice configurations contributes
to the higher dimensional series, allowing it to capture
more of the underlying Physics.

7.1 Dlog-Padé analysis

The Dlog-Padé method is one of the most common meth-
ods for the asymptotic analysis of power series. One cal-
culates Padé approximants to the logarithmic derivative
of the series and obtains estimates for the critical value
xc of the expansion variable x (the threshold) and for the
critical exponent γ from their real first order poles and the
corresponding residues. We also refer to the pole-residue
pairs as data-points since we often plot them in diagrams
of residues versus poles.

Many series point to singularities other than those rep-
resenting the physical critical point. They are observed in
the Dlog-Padé analysis of the original series and, depend-
ing on their strength and location in the complex plane,
hamper convergence of the data points. This effect ap-
pears to be strongest when an extra singularity is on the
negative real axis closer to the origin than the physical
one. Application of an Euler-transformation into the new
variable z = xn x/(xn −x), with xn at or close to the dis-
turbing singularity, usually improves the behavior of the
transformed series.

For some series, in particular those in higher dimen-
sion, we obtain satisfactory results in this manner. Data
points in the pole-residue plots are high in number and
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Table 2. Series for the Gaussian distribution on the d-dimensional hyper-cubic lattice and for x = (J/kBT )2.

Terms of the series. χEA = 1 + . . .

+2 x1 d1

−6 x2 d1 +4 x2 d2

+21.33333333333333333 x3 d1 −24 x3 d2 +8 x3 d3

−57.9999999999999999 x4 d1 +93.333333333333333 x4 d2 −71.999999999999999 x4 d3

+15.999999999999999 x4 d4

+20.266666666666666 x5 d1 −119.999999999999999 x5 d2 +359.999999999999999 x5 d3

−192 x5 d4 +32 x5 d5

+558.4000000000000 x6 d1 −934.488888888888 x6 d2 −991.999999999999 x6 d3

+1210.666666666666 x6 d4 −479.999999999999 x6 d5 +63.999999999999 x6 d6

+1000.02539682539 x7 d1 +2374.39999999999 x7 d2 +2408.5333333333 x7 d3

−4704.0000000000 x7 d4 +3690.6666666666 x7 d5 −1152.0000000000 x7 d6

+128.00000000000 x7 d7

−31435.219047619 x8 d1 +21442.41269841 x8 d2 −20110.400000000 x8 d3

+12771.200000000 x8 d4 −18143.999999999 x8 d5 +10495.999999999 x8 d6

−2687.999999999 x8 d7 +255.9999999999 x8 d8

−20387.53298060 x9 d1 +294403.1746032 x9 d2 −95832.1693122 x9 d3

+21440.0000000 x9 d4 +61560.888888 x9 d5 −62080.000000 x9 d6

+28373.333333 x9 d7 −6144.0000000 x9 d8 +512.00000000 x9 d9

+2051214.7843386 x10 d1 −6192978.8227 x10 d2 +3181210.20952 x10 d3

−1079716.757669 x10 d4 −48661.333333 x10 d5 +257267.199999 x10 d6

−195840.00000 x10 d7 +73813.33333 x10 d8 −13824.00000 x10 d9

+1024.000000 x10 d10

−2725463.2041 x11 d1 +18390206.21 x11 d2 +2845075.7280 x11 d3

+798591.1877 x11 d4 −340330.5315 x11 d5 −554547.199 x11 d6

+961186.1329 x11 d7 −582143.999 x11 d8 +186367.999 x11 d9

−30719.999 x11 d10 +2047.9999 x11 d11

−52046138.6 x12 d1 +64425096.1 x12 d2 −314627076.1 x12 d3

+126856674.2 x12 d4 −20441160.8 x12 d5 −520014.1 x12 d6

−3007795.2 x12 d7 +3301421 x12 d8 −1653248 x12 d9

+459434 x12 d10 −67584.0 x12 d11 +4096.00 x12 d12

−2052218007 x13 d1 +563481178e1 x13 d2 −20936942e2 x13 d3

+846300080 x13 d4 −15546990e1 x13 d5 +318945e2 x13 d6

+2724596 x13 d7 −1300363e1 x13 d8 +1063195e1 x13 d9

−45281e2 x13 d10 +1110e3 x13 d11 −147456 x13 d12

+8192.0 x13 d13

well concentrated along a distinct line for each series, ex-
amples of which follow below. But for other series, the
Dlog-Padé method, even in combination with an Euler-
transformation, is insufficient for a quantitative analysis.
So our strategy is in general to use the Dlog-Padé method
only to get rough estimates for the critical parameters, as
a starting point for a detailed analysis with M1 and M2,
and to assess the general behavior of the series from the
number of pole-residue pairs which are obtained.

7.2 Estimation of xc and the critical exponents using
M1 and M2

The analysis algorithms M1 and M2 allow the accurate si-
multaneous determination of the threshold xc, the leading
critical exponent γ, and the confluent correction to scaling
exponent ∆1, assuming the asymptotic form

χ(x) ∼ A(xc − x)−γ(1 + B(xc − x)∆1 ). (77)
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Table 3. Series for the Uniform distribution on the d-dimensional hyper-cubic lattice and for x = (J/kBT )2.

Terms of the series. χEA = 1 + . . .

+0.6666666666666666666 x1 d1

−0.488888888888888888 x2 d1 +0.4444444444444444444 x2 d2

+0.359788359788359788 x3 d1 −0.65185185185185185 x3 d2 +0.296296296296296296 x3 d3

+0.08084656084656084 x4 d1 +0.373051146384479718 x4 d2 −0.65185185185185185 x4 d3

+0.19753086419753086 x4 d4

−0.89147987814654481 x5 d1 +0.84242210464432686 x5 d2 +0.49683715461493239 x5 d3

−0.57942386831275720 x5 d4 +0.13168724279835391 x5 d5

+1.0637968983789089 x6 d1 −1.862678750213141 x6 d2 +0.59106251224769744 x6 d3

+0.60287673917303544 x6 d4 −0.48285322359396431 x6 d5 +0.08779149519890260 x6 d6

+1.255336691527167 x7 d1 −1.283045789797112 x7 d2 −0.625225076837070 x7 d3

+0.3268519171729049 x7 d4 +0.6538376118623032 x7 d5 −0.3862825788751715 x7 d6

+0.0585276634659350 x7 d7

−2.764322363362706 x8 d1 +5.381812025290449 x8 d2 −1.970220360622241 x8 d3

−1.100189850013248 x8 d4 +0.06329348749101851 x8 d5 +0.6510505802686874 x8 d6

−0.300442005791800 x8 d7 +0.03901844231062340 x8 d8

−9.85782657798808 x9 d1 +17.54278833330664 x9 d2 −9.714423500532811 x9 d3

+3.026748425908237 x9 d4 −1.234630286704749 x9 d5 −0.168708312466884 x9 d6

+0.608947822994459 x9 d7 −0.22890819488898 x9 d8 +0.0260122948737485 x9 d9

+15.5044273681052 x10 d1 −38.7783044835667 x10 d2 +33.5641685051471 x10 d3

−12.0316553472705 x10 d4 +2.84533673882951 x10 d5 −1.14514652844366 x10 d6

−0.348044505410769 x10 d7 +0.543557868404698 x10 d8 −0.171681146166746 x10 d9

+0.0173415299158332 x10 d10

+108.085493498972 x11 d1 −232.015426078230 x11 d2 +168.045218530949 x11 d3

−48.1504957504608 x11 d4 +2.24480229556376 x11 d5 +2.83058482344332 x11 d6

−0.924877616717460 x11 d7 −0.467778685821369 x11 d8 +0.468089181785302 x11 d9

−0.127171219382772 x11 d10 +0.0115610199438887 x11 d11

−142.76066452364 x12 d1 +418.50354734964 x12 d2 −458.98712418598 x12 d3

+231.20946538453 x12 d4 −49.940080322749 x12 d5 +0.060628792921663 x12 d6

+2.7869356691639 x12 d7 −0.64727598233428 x12 d8 −0.53174415759476 x12 d9

+0.39186352362185 x12 d10 −0.093258894214093 x12 d11 +0.0077073466292662 x12 d12

−1391.033864136 x13 d1 +3401.571257928 x13 d2 −3040.190268119 x13 d3

+1234.36058382 x13 d4 −211.0538211516 x13 d5 +5.814822817330 x13 d6

−1.45093243110 x13 d7 +2.63953125141 x13 d8 −0.365539203648 x13 d9

−0.5497466842 x13 d10 +0.32066232142 x13 d11 −0.0678246503365 x13 d12

+0.005138231086 x13 d13

In M1, one studies the logarithmic derivative of

F (x) = γχ(x) − (xc − x)
dχ(x)

dx
(78)

which has a pole at xc with residue −γ + ∆1. For a given
trial value of xc one obtains graphs of ∆1 versus γ for all
Padé approximants of F , and chooses the triplet xc, γ, ∆1

for which best convergence of the different approximants
results [27].

In the M2 method one first transforms the series in x
into series in the variable y = 1 − (1 − x/xc)∆1 and then

takes Padé approximants to

G(y) = ∆1(y − 1)
d ln χ

dy
(79)

which should converge to −γ. Here one plots graphs of
γ versus the input ∆1 for different trial values of xc and
again chooses the triplet xc, γ, ∆1 with the best conver-
gence of all Padé approximants. For both methods it is
advisable to perform first the usual Dlog-Padé analysis, to
get rough estimates of xc and γ which one uses as start-
ing points for the detailed analysis with M1 and M2. The
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Table 4. Series for the Double-Triangular distribution on the d-dimensional hyper-cubic lattice and for x = (J/kBT )2.

Terms of the series. χEA = 1 + . . .

+1 x1 d1

−0.944444444444444444 x2 d1 +1 x2 d2

+0.883333333333333333 x3 d1 −1.88888888888888888 x3 d2 +0.999999999999999999 x3 d3

+0.925282186948853615 x4 d1 +0.908641975308641977 x4 d2 −2.83333333333333333 x4 d3

+1.00000000000000000 x4 d4

−6.21639476778365667 x5 d1 +7.16815696649029982 x5 d2 +1.82592592592592591 x5 d3

−3.77777777777777777 x5 d4 +0.99999999999999999 x5 d5

+6.3863053214177552 x6 d1 −15.004896629433666 x6 d2 +8.705647658240250 x6 d3

+3.63518518518518 x6 d4 −4.722222222222222 x6 d5 +0.9999999999999999 x6 d6

+31.28590186111328 x7 d1 −41.38286394727488 x7 d2 −1.768129041740152 x7 d3

+10.19533313737017 x7 d4 +6.336419753086420 x7 d5 −5.666666666666666 x7 d6

+1.000000000000000 x7 d7

−42.9465436061225 x8 d1 +105.962396480164 x8 d2 −61.3217767001924 x8 d3

−16.807385633723 x8 d4 +10.7947922790515 x8 d5 +9.92962962962962 x8 d6

−6.61111111111111 x8 d7 +0.999999999999999 x8 d8

−447.38013758662 x9 d1 +826.325405622926 x9 d2 −441.151661966652 x9 d3

+80.2235926358573 x9 d4 −35.5380623053978 x9 d5 +9.66160395845584 x9 d6

+14.4148148148148 x9 d7 −7.55555555555555 x9 d8 +1.00000000000000 x9 d9

+331.676191097529 x10 d1 −1222.22773822861 x10 d2 +1383.83407091038 x10 d3

−545.353553191950 x10 d4 +91.7181421721279 x10 d5 −57.8924350055523 x10 d6

+5.95334705075442 x10 d7 +19.7919753086420 x10 d8 −8.5000000000000 x10 d9

+1.00000000000000 x10 d10

+10066.680607773 x11 d1 −22331.632875336 x11 d2 +16898.722229737 x11 d3

−5104.9579819064 x11 d4 +412.40450343047 x11 d5 +125.3464089002 x11 d6

−83.007159731749 x11 d7 −1.1723995688801 x11 d8 +26.061111111110 x11 d9

−9.444444444444 x11 d10 +0.99999999999998 x11 d11

−1250.8803969425 x12 d1 +16566.72572040 x12 d2 −31549.37183747 x12 d3

+21664.50242641 x12 d4 −5879.76957662 x12 d5 +360.0325939430 x12 d6

+186.7090665165 x12 d7 −109.223272530 x12 d8 −12.5580570252 x12 d9

+33.22222222221 x12 d10 −10.38888888888 x12 d11 +0.999999999999 x12 d12

−288282.12879 x13 d1 +726711.250361 x13 d2 −676798.593987 x13 d3

+289743.600575 x13 d4 −53400.7324666 x13 d5 +1584.74112371 x13 d6

+292.731945980 x13 d7 +281.321506576 x13 d8 −134.086189495 x13 d9

−29.046046443 x13 d10 +41.2753086420 x13 d11 −11.3333333333 x13 d12

+1.00000000000 x13 d13

effectiveness and preciseness of these series analysis meth-
ods has been demonstrated in several papers [26,28–30].

In M1 we vary the trial-xc until the curves from the
high order Padé approximants enter fairly symmetrically
from both sides and the best convergence is obtained.
This xc and the corresponding γ are taken as the tem-
porary best estimates for that series, with temporary er-
ror estimates from the nearest trial-xc’s, whose plots show
poorer convergence. In many cases M1 proves to be quite
sensitive to small changes in the trial-xc, and the degree
of convergence usually looks very convincing. Away from
the best xc, convergence degrades quickly, the picture be-
comes non-symmetric and at the same time the area of

convergence shifts to lower or higher values of γ. We show
examples of such plots in Section 7.4. In M2 we vary xc

and look for best convergence of the Padé approximant
curves while they cross each other with a small negative
slope. Compared to M1, the M2-plots are often much less
decisive. A good convergence region sustains over a wider
range, where again the change in xc is accompanied by a
shift in the corresponding γ.

In the end we determine an overall estimate for xc,
which is consistent with the estimates from both M1 and
M2. These numerical results are presented in the tables
of Section 7.4. In the tables we also include rough esti-
mates for ∆1. We comment that the Euler transformation
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Table 5. Results for dimension d = 8 from the analysis with Dlog-Padé, M1 and M2. The first line for each distribution shows
the result from the Dlog-Padé analysis in which Euler transformations with different values xn were used. The remaining lines
show the results from M1 in combination with M2, separately for several values of xn.

Distribution Parameter Threshold Exponent Correction-
xn xc γ Exponent
several 0.072 1.05(1) n/a
−0.084 0.07331(3) 1.046(9) 1.4–1.7

Bimodal −0.073 0.07331(3) 1.046(9) 1.4–1.7
−0.056 0.07332(3) 1.047(12) 1.3–1.5
several 0.080 1.068(20) n/a
−0.084 0.08030(3) 1.048(9) 1.3–1.5

Gaussian −0.070 0.08029(3) 1.047(12) 1.3–1.5
−0.056 0.08030(3) 1.048(9) 1.3–1.5
several 0.148 1.072(22) n/a

Double- −0.168 0.14895(3) 1.048(9) 1.3–1.7
Triangular −0.140 0.14895(3) 1.048(9) 1.3–1.5

−0.112 0.14898(9) 1.048(9) 1.3–1.5
several 0.228 1.069(25) n/a
−0.252 0.22852(9) 1.048(6) 1.3–1.5

Uniform −0.210 0.22848(6) 1.048(6) 1.3–1.5
−0.168 0.22854(9) 1.048(6) 1.3–1.5

is known to produce analytic correction terms even if not
present originally. When the leading correction exponent
is larger than 1, as seems to be the case for some of our
series, these ‘artificial’ corrections will show up in M1
and M2 [31], and hence our ∆1 estimates are mainly in-
cluded for reference and should not be trusted as the real
physical values.

7.3 Sensitivity to the parameter of the Euler
transformation

Our analysis relies in a large part on the use of Euler trans-
formations to increase the number of useful Padé approx-
imants and to improve their convergence. The technique
is well established and has been used with success [32],
but nevertheless we find it worthwhile to check, to what
degree our results are sensitive to the precise choice of
the parameter xn, the value of x that is mapped to infin-
ity by the transformation. We first choose xn very close
to the negative singularity, as indicated by the Dlog-Padé
analysis of the original series. We then vary this xn over
a considerable range of typically 20%, and compare the
results. We observe that a variation of xn does move the
data points or curves obtained from individual Padé ap-
proximants, but that the average (in Dlog-Padé plots) and
the convergence region (in M1 plots) stay fixed to a very
good accuracy, when compared to the error bounds given
by the analysis technique itself. We thus exclude that our
results are artifacts of the applied Euler transformations.

7.4 Explicit results from the analysis

The numerical results for dimension 8 are summarized in
Table 5. In this dimension, even without an Euler trans-
formation, the Dlog-Padé analysis gives convincing results

for all the distributions: Bimodal, double-triangular, uni-
form and Gaussian.

During the analysis we prepared a large number of
plots of which we can only present a few to illustrate the
process. The distribution of the pole-estimates indicates a
negative real pole for the asymptotic function, somewhat
weaker than the positive one (e.g. Fig. 3). Both poles are
at the same distance from the origin. The convergence of
pole-residue pairs improves upon Euler transformation.

The numerical results for the critical exponents are cal-
culated as averages over estimates from high-order Padé
approximants. These include data from the untransformed
series and from the series transformed with three different
values of xn. In the tables these are the entries without
an estimate for ∆1. All values are slightly larger than the
mean field value of γ = 1 (Fig. 4). This deviation is under-
stood on theoretical grounds as being due to corrections
to the leading singular behavior. Also the data indicate
that the exponent estimate may further approach 1 for
longer series, since generally residues decrease in value as
the approximant-order increases while remaining greater
than one (Fig. 5). When taking into account the correc-
tion exponent with M1/M2 the deviation also decreases.
The results from M1 and M2 are shown in the table sep-
arately for different values of xn, and generally show very
good agreement. We observe the possibility of a systematic
shift to γ = 1.060(12) in case one chooses a different re-
gion of best convergence. The values for ∆1 are included
for reference only, due to the reason mentioned before.
Although the absolute value of the exponent-estimate is
larger than 1, we find numerical agreement of the results
for all the tested distributions.

The qualitative behavior in dimension 7 agrees with
that for d = 8, although the exponent estimates are
slightly farther away from 1 (see Tab. 6). The critical
threshold xc for each series is larger than in dimension 8.
Again we observe a negative pole of comparable strength
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Table 6. Results for dimension d = 7 from the analysis with Dlog-Padé, M1 and M2. The first line for each distribution shows
the result from the Dlog-Padé analysis in which no Euler transformations was applied. The remaining lines show the results
from M1 in combination with M2, separately for several values of xn.

Distribution Parameter Threshold Exponent Correction-

xn xc γ Exponent

none 0.088 1.14(3) n/a

−0.082 0.08731(9) 1.105(15) 1.5–1.7
Bimodal −0.078 0.08732(9) 1.105(12) 1.3–1.7

−0.051 0.08738(6) 1.110(15) 1.3–1.4

none 0.097(1) 1.14(3) n/a

Gaussian −0.071 0.09710(6) 1.107(9) 1.3–1.4

−0.062 0.09712(9) 1.108(12) ≈1.3

none 0.1784(4) 1.14(3) n/a

Double- −0.265 0.17790(9) 1.108(9) 1.3–1.6

Triangular −0.156 0.17790(9) 1.108(9) 1.3–1.5

−0.112 0.17799(9) 1.110(6) ≈1.3

none 0.2745(5) 1.13(3) n/a

−0.315 0.27402(9) 1.108(9) 1.3–1.5
Uniform −0.234 0.27399(9) 1.108(6) 1.3–1.5

−0.225 0.27399(9) 1.108(6) 1.3–1.5



248 The European Physical Journal B

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Estimates x
c
  (Simple Real Poles)

E
xp

on
en

t E
st

im
at

es
 γ

 (
R

es
id

ue
s)

 4
7@

0.
27

6

 24@1.12

0.273 0.274 0.275 0.276 0.277 0.278

1.1

1.15

1.2

Fig. 6. Pole-residue plot from a Dlog Padé analysis of the untransformed χEA -series for the Uniform distribution in d = 7. See
the caption of Figure 4 for further explanation.

and distance from the origin as the physical one, but nev-
ertheless, even without an Euler transformation the series
give consistent results. To illustrate this we show in Fig-
ure 6 a pole-residue plot of the untransformed series for
the uniform distribution and also include in Table 6 the
estimates from the Dlog-Padé analysis without transfor-
mation. In our M1/M2-analysis we again observe the pos-
sibility of a systematic shift to γ = 1.120(15) in case one
chooses a different region of best convergence.

In dimension 5 the negative pole is closer to the ori-
gin than the positive one, and convergence degrades. Still
the data points line up properly. To improve their conver-
gence and to get higher numerical accuracy we apply Euler
transformations with several xn (e.g. Fig. 7) and the final
estimates (Tab. 7) are obtained the same way as described
before. Looking at Figure 8, the main line of data-points
for the Gaussian distribution still increases with the order
of the Padé approximants. Therefore, the value measured
by this method is probably smaller than what a longer
series would show. In summary, all studied distributions
agree at d = 5 on a common exponent within their error
margins.

In Figures 9 to 10 we show, for the case of the Gaussian
distribution, plots as they are typically obtained from M1.
Each curve in a plot comes from a different Padé approx-
imant as the legend shows. In all figures we clearly see a
region where the lines converge, and since all figures show
the same range in the γ-∆1-plane it is also easy to see that
the convergence region shifts around. Figures 9a and b dif-
fer in the trial x as input parameter. While for x = 0.177

convergence is quite good, is becomes better for x = 0.179
(in fact best among our trial values). At this value of x
the shape of the curves is also symmetric and they switch
over to one side for larger x (the opposite side, when com-
pared to the smaller x) which we find to be a characteristic
feature of the point of best convergence. Figure 10 shows
the corresponding plot for the untransformed series. Here
x = 0.179 is also near the characteristic point of symmet-
ric curves. Still convergence is not as good as in Figure 9b
and the center is shifted to a slightly larger value of γ.
The example, although not the most common case, also
illustrates that one must not rely on analysis with either
M1 or M2 alone. While M1 gives an estimate of γ = 2
or higher, M2 (Fig. 11) points to a lower value of roughly
1.82 and ∆1 above 1, or γ ≈ 1.95 with ∆1 below 1 and
poorer convergence. Our estimates in the tables always re-
sult from using M1 together with M2. Figure 12 is another
example, showing a plot from M1-analysis for the Uniform
distribution near the symmetry point of best convergence.

As we decrease the dimension further to d = 4, the
analysis becomes increasingly difficult. One reason is the
negative pole on the real axis, which is very strong and
apparent for all the series. Without an Euler transfor-
mation, the Dlog-Padé analysis does not show anything
conclusive. For the transformed series, a larger number of
data points lines up well in the pole-residue plots, but they
are still not well converged. The series for the Gaussian
distribution is somewhat exceptional here: Exponent es-
timates converge well with increasing approximant-order,
but they approach a value of γ = 3.1± 0.1 which is much



D. Daboul et al.: Test of universality in the Ising spin glass 249

0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

Estimates x
c
  (Simple Real Poles)

E
xp

on
en

t E
st

im
at

es
 γ

 (
R

es
id

ue
s)

 1
15

@
0.

17
4

 64@1.61

No Euler−Tr.          
Euler p

n
= −0.080

Euler p
n
= −0.096

Euler p
n
= −0.064

0.17 0.172 0.174 0.176 0.178

1.5

1.6

1.7

1.8
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Fig. 9. M1 analysis of the χEA -series for the Gaussian distribution in d = 5. An Euler transformation with xn = 0.08 was
applied. Plot (a) was obtained for a trial x of 0.177, where convergence is visible but lies below the optimal convergence point.
In (b) the trial x = 0.179 is near or at the point of optimal convergence.
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Fig. 11. M2 analysis of the Euler-transformed χEA -series (xn = 0.08) for the Gaussian distribution in d = 5 and for a trial x
of 0.179. Illustrates the need to use M1 and M2 in combination.
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Fig. 12. M1 analysis of the χEA -series for the uniform distribution in d = 5, after an Euler-transformation with xn = 0.29.
x = 0.488 is near or at the the point of optimal convergence.

Table 7. Results for dimension d = 5 from the analysis with Dlog-Padé, M1 and M2. See caption of Table 5 for details.

Distribution Parameter Threshold Exponent Correction-

xn xc γ Exponent

several 0.154 1.91(10) n/a

Bimodal −0.120 0.154(3) 1.95(15) 1.1–1.3

−0.100 0.154(3) 1.95(15) ≈1.0

several 0.174 (1.67(8)) n/a

−0.096 0.176(3) 1.70(15) 0.8–1.0
Gaussian −0.080 0.177(3) 1.75(15) 0.8–1.0

−0.064 0.177(3) 1.75(15) 0.8–1.0

several 0.312 1.81(7) n/a
Double- −0.240 0.312(6) 1.80(15) 0.9–1.0
Triangular −0.200 0.312(6) 1.80(15) 0.9–1.0

several 0.484 1.72(6) n/a

Uniform −0.348 0.484(6) 1.70(15) 1.0–1.2

−0.290 0.487(6) 1.70(15) 0.8–1.0

higher than what we obtain in the other cases and with
the other methods. If this is not simply an artifact of the
transformation, it must be attributable to the correction-
term to scaling, which becomes increasingly important at
lower dimension.

With M1/M2 applied to the transformed series we are
able to obtain estimates for xc and γ, although the error
margins are quite large. Indeed, the value we obtain for
the correction exponent ∆1 is much larger than 1 (and
larger than in the higher dimensions). Again we find that

our numbers agree with a common exponent γ for all the
distribution functions.

8 Conclusions

Figure 13 summarizes our numerical estimates for the
leading critical exponent γ of the Edwards Anderson sus-
ceptibility χEA in the different dimensions. For each di-
mension we show the 4 values obtained for the different
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Table 8. Results for dimension d = 4 from the analysis with Dlog-Padé, M1 and M2. The table lines without estimates for ∆1

stem from the Dlog-Padé analysis in which Euler transformations with different values xn were used. The remaining lines show
the results from M1 in combination with M2, separately for several values of xn.

Distribution Parameter Threshold Exponent Correction-
xn xc γ Exponent
−0.144 0.26(2) 2.5(3) 1.5–1.6

Bimodal −0.120 0.26(2) 2.5(3) 1.5–1.6
several 0.31(2) 3.1(1) n/a
−0.108 0.312(4) 2.3(1) 1.3–1.4

Gaussian −0.090 0.314(4) 2.3(1) 1.3–1.4
−0.072 0.314(4) 2.3(1) 1.3–1.4
several 0.52(8) 2.8(8) n/a

Double- −0.276 0.54(2) 2.5(2) ≈1.5
Triangular −0.230 0.54(2) 2.5(2) ≈1.5

−0.396 0.84(2) 2.5(1) 1.3–1.4
Uniform −0.330 0.83(2) 2.4(1) 1.3–1.4

−0.264 0.84(2) 2.4(1) 1.3–1.4
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Fig. 13. Estimates for the critical exponent γ grouped by
space dimension. The different values for each dimension are
obtained from the 4 probability distributions. The estimates
appear to agree on a common exponent γ within but separately
in each dimension. Above the critical dimension du = 6 the
values are close to 1.

random distributions. The mean values and error bars are
as shown in Tables 5 to 8.

The error bars for dimensions 7 and 8 are too small to
be visible in the plot. We observe once more that in these
dimensions the estimates are close to, but still larger than
the expected mean-field value of 1. As we argued, the de-
viation is likely caused by correction to scaling terms and
the fact that we work with relatively short series. Our
Dlog-Padé analysis suggests smaller estimates with longer
series, and when accounting for the first correction term
using the methods M1 and M2 the deviation indeed de-
creases, but higher order corrections cannot be excluded.
The larger deviation for d = 7 is consistent with the ob-
servation that the correction terms are more dominant in
lower dimensions.

As expected, the estimates we obtain for dimensions 4
and 5 are pronouncedly different from the mean field

value. Within each dimension the estimates agree on a
common value for all the random distributions we study,
which is roughly γ = 2.4 ± 0.2 in d = 4 and γ = 1.8 ± 0.2
in d = 5. Thus our data do not indicate that the random
distribution for the quenched-in disorder splits the spin
glass model into many universality classes nor that the
model behaves in that respect differently than other com-
mon thermodynamic models, in contrast to claims from
references [14–20]. Instead we find confirmation for the
established picture, that the space dimension creates uni-
versality classes and that the leading critical exponent is
a universal quantity [33].

Most of the simulations of the Ising spin glass have
been done in dimension 3, in which our series do not per-
form well. For a direct comparison we are thus limited
to the sparse results for d = 4 from [16,18]. Our esti-
mates for the critical temperature Tc agree rather well
with those by Bernardi and Campbell. The compared
values are Tc = 1.96 (vs. 1.99 ± 0.01) for the bimodal
distribution, Tc = 1.88 (vs. 1.91 ± 0.01) for the uni-
form distribution, and Tc = 1.79 (vs. 1.77 ± 0.01) for
the Gaussian distribution, where the uncertainty in our
estimates is also roughly 1 in the last digit, from fluc-
tuations and from possible additional systematic shifts,
due to scaling corrections. We confirm a slight decrease of
Tc with increasing kurtosis of the random distributions,
which is defined as the ratio of moments R = M4/M

2
2 .

The kurtosis values are: Bimodal 1, double-triangular 4/3,
uniform 9/5, Gaussian 3 and for the exponential distribu-
tion 6. Bernardi and Campbell have calculated the ex-
ponent η, while we have values for γ, so we currently
lack a third exponent, such as ν, for a direct compari-
son. However, the discrepancy in the general universal vs.
non-universal behavior remains.

Some authors [34–36] have stressed the importance of
corrections to finite size scaling (FSS). In taking these into
account, they do not find violated universality. We can-
not assess the quality of the simulations that were done
by Bernardi, Campbell [14–16,19] and others, but, from
the data in the papers and later citations, we are led to
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speculate that neglected corrections to FSS have caused
systematic errors in the exponent estimates from simula-
tions. We would further like to stress the general state-
ment made by other authors, that the characteristic fea-
tures of the spin glass with its quenched-in disorder creates
enormous problems for simulations. Series expansion tech-
niques appear here particularly suitable since the config-
urational average over the randomness is handled exactly
within their framework and own limitations.

We thank Ian Campbell for several stimulating communica-
tions and the German Israeli Foundation for financial support.
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